Dynamic Response of Aeroservoelastic Systems with Nonlinear Elements

Moti Karpel
Technion - Israel Institute of Technology

Presented at the
First Workshop on Recent Advances in Aeroelasticity
Instituto Tecnológico de Aeronáutica, DCTA, São José dos Campos, São Paulo, Brazil, July 1-2 of 2010
Background

- Most common structural and aeroelastic analysis and design tools in the aeronautical industry are linear.
- Introduction of nonlinear effects is usually based on ad-hoc, problem-dependent formulation and simulation processes.
- Nonlinear high-fidelity models are often inefficient and are not naturally integrated in the industrial design processes.
- Reduced-order modeling (ROM) approaches may provide adequate solutions but they are often:
 - lack physical interpretation
 - too specific
 - result in over-simplified linearization
 - hard to be integrated in existing design processes
 - engineers are too conservative or do not have the resources to try them out.
The Increased-Order-Modeling (IOM) Approach

- Start with linear aeroelastic models.
- Identify phenomena of potentially important nonlinear effects.
- Add nonlinear corrections that adequately represent the key nonlinear effects.
- Formulate the problem based on a main linear block and nonlinear feedback loops.
- Perform simulations in a way that takes advantage of this formulation.
- Verify/update the models by comparisons with selected tests and/or high-fidelity solutions of rigid and elastic vehicles.
- IOM research at Technion resulted in two “plug-and-play” software packages for various IOM applications:
 - Matlab/Simulink code with time-domain models
 - The DYNRESP code with frequency-domain models
Presentation Outline

- The DYNRESP code for dynamic response and loads
- Control nonlinearities:
 - Case 1: Gust response with nonlinear control system
- Structural nonlinearities:
 - Case 2: Actuator free play
 - Case 3: Solid fins with nonlinear plates
- Aerodynamic nonlinearities:
 - Case 4: Discrete gust loads
Dynamic Response with Nonlinear Control, Motivation

- A400M is a military cargo aircraft currently in flight tests by Airbus Military (formerly EADS-CASA).
- Dynamic gust, landing and maneuver loads provide critical design cases.
- Symmetrically actuated ailerons and wide-band actuators facilitate maneuver and gust loads alleviation.
- Control limits, activation zones and operation logics introduce important nonlinear effects.
- The new DYNRESP code was developed for Airbust Military based on lessons learned in the A400M project.
DYNRESP Main Objectives

- Coverage of all aspects of aircraft dynamic loads analysis
- Efficient massive computations in industrial environment
- Robustness
- Advanced analysis capabilities and functionality
- Flexibility is adding new features and non-linear effects
- User friendliness
- Being based on data from commonly used structural, multi-body, aerodynamic and control software packages.
- Compatibility with typical in-house loads codes.
- Applicability with a variety of computational platforms.
Dynamic Response and Loads Disciplines

• Modal and control-surface response to:
 – deterministic gusts
 – pilot commands
 – direct forces.

• Response simulations are used in subsequent calculations of

<table>
<thead>
<tr>
<th>Short signals:</th>
<th>Long signals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>discrete gust loads</td>
<td>continuous gust loads</td>
</tr>
<tr>
<td>maneuver loads</td>
<td>actuator oscillatory failure</td>
</tr>
<tr>
<td>store ejection</td>
<td>taxi loads.</td>
</tr>
<tr>
<td>blade/nacelle imbalance</td>
<td>ground structure-control</td>
</tr>
<tr>
<td>coupling</td>
<td>tests</td>
</tr>
<tr>
<td>landing loads</td>
<td></td>
</tr>
</tbody>
</table>
Basic Formulation

• Second-order frequency-domain equations of motion of the main linear block.
• FFT/IFFT techniques
• Treatment of zero-frequency singularities
• Enforcement of zero initial displacements and loads
• Segmentation of long excitation signals.
• Unified implementation to all loads disciplines.
• The system may include any combination of nonlinear and isolated-linear control blocks
• Direct-force feedback may be added for nonlinear aerodynamic effects.
DYNRESP General Flow Chart

- **Data:**
 - Input parameters as in NASTRAN/ZAERO
 - Data matrices from NASTRAN
 - Data matrices from ZAERO

- **Simulations:**
 - Discrete gusts / Maneuver commands / Direct forces
 - Control on/off / Control on/off / Air on/off

- **Modal response:**
 - Modal and control surface displacements, velocities, accelerations.
 - Time and frequency domain

- **Loads:**
 - Summation of Forces or Mode-Displacement method
 - Grid-point forces, aero pressures, section loads
Time-Domain Gust Response with Nonlinear Control

- TD state-space ASE models based on rational-function approximation of the aerodynamic coefficient matrices.
- Export the TD model to simulation codes such as Matlab/Simulink.
- Dynamic response with nonlinear control system.
- Use resulting modal response $\{\xi(t)\}$ and actuator outputs $\{\delta(t)\}$ for loads analysis.
FD-Convolution Gust Response with Nonlinear Control

- **Stage 1**: FD response of the main linear block to gusts and control commands with the nonlinear block disconnected.
- **Stage 2**: TD response of the linear block to gust and to unit impulses from the nonlinear block using FFT techniques.
- **Stage 3**: Adding nonlinear effects based on nonlinear models and convolution with impulse responses.
Case 1: Gust loads on Generic Transport Aircraft (GTA) model with nonlinear control

with H. Climent and C. Maderule and L. Anguita of Airbus Military,

- Structural and aerodynamic models

- Control system: symmetrically activated ailerons based on accelerometer near CG

- Frequency: 5 Hz.
Nonlinear control system

- TF1: basic linear control law
- NL1: Cluster of nonlinear elements. Main features:
 - limit the deflections and rates
 - hold peak deflections
 - minimal deflection 1°
- TF2: enforces slow decay
- NL2: selection switch
Modal response

- FD-convolution vs. TD-Simulink
- FD signals return to zero at $T=8.192 \text{ sec}$
- Differences in rigid-body response (Modes 1, 2) do not affect loads.
- Elastic responses practically identical.
Actuator response, linear and nonlinear FCS
Modal response in the open- and closed-loop cases
DYNRESP as Framework for the IOM Approach

- The presented loads process with TD or FD models supplemented with nonlinear control feedback loops can serve as a framework for IOM applications.
- Natural extension of common analysis and design practices.
- The linear response is based on user’s models.
- Very efficient.
- Depends of course on the ability to model the nonlinearity by adequately accurate feedback loops.
Case 2: LCO Simulations with actuator free play with Paul Gold

- A common strong nonlinearity that is also difficult to model is free play in the actuator connections to the control surfaces.

- Aileron in the free-play zone: out of the free-play zone:
Free-play IOM Block Diagram
Main Modeling Difficulties and Solutions

• Efficient models are based on a single set of normal modes
 – **Problem**: How to represent large local concentrated forces during time simulations?
 – **Solution**: Use local *fictitious masses*.

• Free-play causes asymmetric response.
 – **Problem**: Do we have to use full-aircraft models?
 – **Solution**: No, we can use symmetric and antisymmetric modes with *modal coupling effects*.
Demonstration UAV Model

Structural finite-element model
Aerodynamic panel model
Structural Model with Fictitious Masses

- Eigenvalue problem with nominal structure and fictitious masses:
 \[
 [K_{aa}][\phi_{ai}] = [M_{aa} + M_F][\phi_{ai}][\Omega_i]
 \]
 - In our case: \(\delta_s\) is aileron elastic rotation relative to wing
 - actuator stiffness \(k_\theta=0\); fictitious mass \(m_F=100Kgm^2\)
 - “Cleaning” the generalized mass matrix:
 \[
 [\tilde{M}_{ii}] = [M_{ii}] - [\phi_{ai}]^T [M_F] [\phi_{ai}]
 \]
 - Adding actuator stiffness:
 \[
 [\tilde{K}_{ii}] = [K_{ii}] + [\phi_{ai}]^T [\Delta K] [\phi_{ai}]
 \]
 - Eigenvalue problem for actual natural frequencies:
 \[
 [\tilde{K}_{ii}][\psi] = [\tilde{M}_{ii}][\psi][\Omega_h]
 \]
 - Mode shapes of actual structure:
 \[
 [\phi_{ah}] = [\phi_{ai}][\psi]
 \]
Natural frequencies based on FM model

\[k_\mu = 0.001 \left[\frac{kg m^2}{sec^2} \right] \quad k_\mu = 30 \left[\frac{kg m^2}{sec^2} \right] \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>Nastran FM included [Hz]</th>
<th>FM cleaned [Hz]</th>
<th>Direct [Hz]</th>
<th>FM cleaned [Hz]</th>
<th>Direct [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
<td>0.060</td>
<td>0.060</td>
<td>3.577</td>
<td>3.577</td>
</tr>
<tr>
<td>5</td>
<td>3.606</td>
<td>3.817</td>
<td>3.817</td>
<td>8.328</td>
<td>8.329</td>
</tr>
<tr>
<td>7</td>
<td>12.450</td>
<td>15.640</td>
<td>15.641</td>
<td>15.754</td>
<td>15.754</td>
</tr>
<tr>
<td>8</td>
<td>16.064</td>
<td>22.703</td>
<td>22.703</td>
<td>22.731</td>
<td>22.731</td>
</tr>
<tr>
<td>9</td>
<td>22.735</td>
<td>22.871</td>
<td>22.871</td>
<td>23.504</td>
<td>23.503</td>
</tr>
<tr>
<td>10</td>
<td>24.523</td>
<td>33.709</td>
<td>33.645</td>
<td>35.618</td>
<td>35.577</td>
</tr>
<tr>
<td>11</td>
<td>36.911</td>
<td>37.064</td>
<td>37.061</td>
<td>37.172</td>
<td>37.165</td>
</tr>
<tr>
<td>12</td>
<td>39.907</td>
<td>43.393</td>
<td>43.386</td>
<td>43.451</td>
<td>43.445</td>
</tr>
<tr>
<td>13</td>
<td>43.712</td>
<td>49.584</td>
<td>49.584</td>
<td>49.584</td>
<td>49.584</td>
</tr>
<tr>
<td>14</td>
<td>49.584</td>
<td>51.792</td>
<td>51.791</td>
<td>51.793</td>
<td>51.792</td>
</tr>
<tr>
<td>15</td>
<td>51.794</td>
<td>56.647</td>
<td>56.560</td>
<td>56.679</td>
<td>56.654</td>
</tr>
<tr>
<td>17</td>
<td>58.869</td>
<td>84.073</td>
<td>59.247</td>
<td>100.288</td>
<td>60.005</td>
</tr>
</tbody>
</table>
Linear open-loop model with floating ailerons

- Use FM-cleaned modes with \(k_\theta = 0 \).
- State-space aeroelastic equations of motion:
 \[
 \{ \dot{x}_{ae} \} = [A_{ae}] \{ x_{ae} \}
 \]

where

\[
\begin{align*}
\{ x_{ae} \} &= \begin{pmatrix} \xi \\ \dot{\xi} \\ x_a \end{pmatrix}, \\
[A_{ae}] &= \begin{bmatrix} 0 & I & 0 \\ -[\bar{M}]^{-1} [K_{hh} + qA_0] & -[\bar{M}]^{-1} \left(B_{hh} + \frac{qL}{V} A_1 \right) & -q[\bar{M}]^{-1} [D] \\ 0 & [E] & \frac{V}{L} [R] \end{bmatrix}, \\
[\bar{M}] &= [M_{hh}] + \frac{qL^2}{V^2} [A_2]
\end{align*}
\]

- The aerodynamic coefficient matrices are of the rational function
 \[
 \left[\tilde{Q}_{hh}(ik) \right] = [A_0] + [A_1] ik + [A_2] (ik)^2 + [D] (ik[I] - [R])^{-1} [E] ik
 \]
 that approximates the tabulated generalized aerodynamic matrices \([Q_{hh}(ik)]\)
Linear open-loop model with nominal actuators

- State-space aeroelastic equations of motion

\[\begin{align*}
\{ \dot{x}_{ae} \} &= \left[A_{ae} \right] \{ x_{ae} \} + \left[B_{ae} \right] \{ M_{inp} \} \\
\text{where } & \quad [B_{ae}] = \begin{bmatrix}
0 \\
\bar{M}^{-1} [\phi_{sh}]^T \\
0
\end{bmatrix}
\end{align*} \]

where \([\phi_{sh}]\) is the row partition of \([\phi_{ah}]\) associated with \(\{ M_{inp} \}\).

- Structural rotations of the control surfaces:

\[\{ \delta_s(t) \} = [\phi_{sh}] \{ \xi(t) \} \]

- Actuator forces are introduced by the feedback loop:

\[M_{inp_i} = k_{\theta_i} \delta_{s_i} \]

- Can perform nominal flutter analysis with closed actuator loop.
Nonlinear open-loop model with free play

- The system is driven by actuator outputs \(\{ \delta_c \} \)
- The elastic aileron deflections become
 \[
 \{ \delta_s (t) \} = \{ \delta_a (t) \} - \{ \delta_c (t) \}
 \]
 where \(\{ \delta_a (t) \} \) is the vector of actual aileron deflections
 \[
 \{ \delta_a (t) \} = [\phi_{sh}] \{ \xi (t) \}
 \]
- The linear plant model is constructed with symmetric and antisymmetric modes, yet uncoupled.
- Right and left aileron output deflections:
 \[
 \begin{pmatrix}
 \delta_{s_r} \\
 \delta_{s_l}
 \end{pmatrix} =
 \begin{bmatrix}
 \phi_{sh_s} & \phi_{sh_a} \\
 \phi_{sh_s} & -\phi_{sh_a}
 \end{bmatrix}
 \begin{pmatrix}
 \xi_s \\
 \xi_a
 \end{pmatrix} -
 \begin{pmatrix}
 \delta_{c_r} \\
 \delta_{c_l}
 \end{pmatrix}
 \]
- Right actuator input moment with free play \(\pm \delta_{f_r} \):
 \[
 M_r =
 \begin{cases}
 -k_\theta (\delta_{s_r} + \delta_{f_r}) / 2 & \text{if } \delta_{s_r} < -\delta_{f_r} \\
 0 & \text{if } -\delta_{f_r} \leq \delta_{s_r} \leq \delta_{f_r} \\
 -k_\theta (\delta_{s_r} - \delta_{f_r}) / 2 & \text{if } \delta_{s_r} > \delta_{f_r}
 \end{cases}
 \]
- Left aileron moment \(M_l \) is determined similarly.
Asymmetric LCO in response to unit aileron command

- The linear ASE plant, with the nonlinear feedback loop was implemented in Simulink.
- Simulations performed for deviations from the steady level flight.
- The right and left aileron elastic rotations δ_{s_r} and δ_{s_l} were calculated relative to the initial $\delta_t = -1.02^\circ$.
- A roll simulation was performed for response to an antisymmetric step actuator command $\delta_c = 3.67^\circ$ that brings the right aileron to the middle of the free play zone.
- The right aileron experiences almost harmonic LCO at 5 Hz.
Elastic rotations of right and left ailerons, unit command

Right:

Left:
The nonlinear ASE model is augmented with a 3rd-order actuator and a classical proportional-integral (PI) roll controller. The PI controller was designed to yield acceptable closed loop stability margins for the no-free-play case.

Time histories of system response with no free play case:

roll rate:

roll-rate error:
Closed loop response, with actuator free play

Actual and commanded aileron rotations:

Elastic aileron rotations, roll rate and roll-rate error:
Closed-loop response with actuator free play in typical roll maneuver sequence

Actual and commanded aileron rotations:

Elastic aileron rotations, roll rate and roll-rate error:
Case 3: Solid fin with nonlinear plate elements with Dani Levin

Steel Fin
0.9 mm thickness
Basic equation of motion

\[
[m] \{\ddot{u}\} + [c] \{\dot{u}\} + [k] \{u\} = \{F_A(t)\}
\]

Structural Part

Stiffness matrix changes due to stress stiffening

Unsteady aerodynamic forces
Nonlinear in-plane strain

\[\varepsilon = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ -\frac{\partial^2 w}{\partial x^2} \\ -\frac{\partial^2 w}{\partial y^2} \\ 2\frac{\partial^2 w}{\partial x \partial y} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2 \\ \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2 \\ \left(\frac{\partial w}{\partial x} \right) \left(\frac{\partial w}{\partial y} \right) \\ 0 \\ 0 \\ 0 \end{bmatrix} = \left\{ \varepsilon_0^{pl}, \varepsilon_0^b \right\} + \varepsilon_{NL}^{pl} \]

- Von Karman equations are used.
- Nonlinear strain part is added due to stretching of the plate in bending.
Co-Rotational Approach (2)

\[
\begin{align*}
\{ \delta^e_b \} &= \{ \delta^e_b \}_{\text{Rigid}} + \{ \delta^e_b \}_{\text{Elastic}}
\end{align*}
\]
IOM Time-Domain Formulation

- Minimum-state rational approximation of the unsteady aerodynamic force coefficient matrices, using ZAERO, yields:

\[
\begin{bmatrix}
 \dot{\xi} \\
 \ddot{\xi} \\
 \dot{x}_a
\end{bmatrix} =
\begin{bmatrix}
 0 & I & 0 \\
 -[\bar{M}]^{-1} [K_L + q_\infty A_0] & -[\bar{M}]^{-1} \left[\frac{q_\infty L}{V} A_1 \right] & -q_\infty [\bar{M}]^{-1} [D] \\
 0 & [E] & \frac{V}{L}[R]
\end{bmatrix}
\begin{bmatrix}
 \xi \\
 \dot{\xi} \\
 x_a
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 [M]^{-1} [\Delta K(\xi)] \\
 0
\end{bmatrix}
\begin{bmatrix}
 \xi \\
\end{bmatrix}
\]

\[
[M] = [M] + \frac{q_\infty L^2}{V^2} [A_2]
\]
IOM block diagram
Static Loading Comparison

- Static loads with no aerodynamics:
 \[
 \left([K_L] + [\Delta K(\xi)] \right) \{\xi\} = \{F_{\text{ext}}\}
 \]

- Tip displacements:

- 4 modes are sufficient
Linear Flutter Analysis

v-g Plot for Cropped Delta Wing, $M=0.85$

Torsion-Bending flutter mechanism at:
$M=0.85$, $q=18.96\text{kPa}$
$\omega_f=45.6\text{ Hz}$
Linear System Time Simulation

Deflection vs Time, node 12

Pitch Angle vs Time, node 12

Node 12 displacement and rotation at:

q=19.8kPa
Nonlinear Time Simulation

Deflection vs Time, node 12

Pitch Angle vs Time, node 12

Deflection vs Time, node 32

Pitch Angle vs Time, node 32

q=19.16kPa

q=21.72kPa

q=23.92kPa
Comparison with wind-tunnel test and other works

Results Comparison, Node 12 Deflection

Results Comparison, LCO Frequency
Cases 4: Gust Response with Nonlinear aerodynamics
with Daniella Raveh and Alex Shousterman

- MSC/NASTRAN structural model, ZAERO aero model and EZNSS Euler surface grid of generic transport aircraft:
CFD Response Simulations at Mach 0.85

- Wing lift coefficient vs. AOA, CFD and linear models, rigid aircraft.
- Nonlinear aerodynamic effects may yield reduced gust loads in practical design cases.

![Graph showing C_L vs. Angle of Attack]
Distribution of lift and moment coefficients over the wing
Distribution of pressure coefficients over the wing

EZNSS

ZAERO
Distribution of lift coefficients over the wing
Distribution of X_{cp} over the wing
Linear correction factors in ZAERO aerodynamics

- Linearly distributed correction factors to yield linear C_l and C_m of aerodynamic strips:

 Wing factors

 horizontal tail factors
DYNRESP gust response with non-linear feedback

• Linear C_l and C_m of the nominal model are “sensors”
• Non-linear feedback elements are based on look-up tables from CFD
• C_l and C_m corrections are introduced by direct forces and moments at the wing and tail main spars.
• DYNRESP calculated 2 cases:
 – Linear correction with linear look-up tables
 – Non-linear correction with nonlinear look-up tables
Wing-root bending moment response to 1-cos discrete
Wing lift coefficient due to sharp-edge gust, 0 to 4°
Wing lift coefficient due to 1-cos discrete gust, up to 4°